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Circadian Rhythm: Concept and Description

Definition
A biological rhythm with a periodicity of approximate 24 hours
that persists in constant conditions.

Description

Period - [20h, 28h]

Phase - timing of peak
expression

Amplitude - half the range of
oscillation

Mean level - average value
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Circadian Clock: How Many Genes Involved?
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Microarray and Circadian Rhythm

Design of Circadian Microarray Experiment

Computational Challenges
Extremely sparse determination
Extremely high dimensionality
Low replicate numbers
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Statistical Assessment of Circadian Rhythms in
Microarray Data

Categories of Prior methods
1 Time-domain algorithms (Such as COSOPT)

Pros: Efficient for short time-series
Cons: Model dependent, Predefine wavelength

2 Frequency-domain methods (Such as Fisher’s G-test)
Pros: Model independent
Cons: Low resolution for short time-series

Our Solution
Combine both time-domain and frequency-domain analyses.
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Frequency Domain: Period Detection
Autoregressive Spectral Estimation

Input

An evenly spaced time-series {xt : t = 1, · · ·,n}

Algorithm
1 Apply the autoregressive(AR) model of order p, noted as AR(p),

to fit {xt} by:

xt =

p∑
i=1

αixt−i + εt (1)

2 Estimate the frequency spectrum from AR coefficients αi by:

px(f ) =
σ2
ε

|1 +
∑p

k=1 αk e−ifk |2
0 ≤ f < 0.5 (2)
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Time Domain: Rhythm Modeling
Harmonic Regression

Input

{xt} and frequency fi (derived in Eq. (2))

Algorithm

Harmonic Regression models the rhythmic components of {xt}
by

xt = µ+
n∑

i=1

βi cos(2πfi t + φi) + εt (3)

then Eq. (3) can be reduced to a simple linear regression form:

xt = µ+
n∑

i=1

{pi cos(2πfi t) + qi sin(2πfi t)}+ εt (4)
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ARSER in Action

a synthetic time-series

Generated by f (t) = 500e−0.01·t + 140e−0.01·t · cos(2π
24 t) + ε,

where t ∈ [0,96] with 4h intervals

The diagram of ARSER and a case study
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Multiple Testing Corrections

ARSER
False discovery rate q-value (Storey et al. 2003)

Prior methods
COSOPT

pMMC-β value to correct for multiple comparisons
Fisher’s G-test

false discovery rate method
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Testing Datasets in Our Study
Dataset 1: Our generated synthetic data

periodic time-series
Stationary cosine wave with constant amplitude and mean
level
Nonstationary cosine wave with exponentially damped
amplitude and mean level

random time-series
white noise following (µ = 0, σ = 1) normal distribution
AR(1) process

time-series sampled every 4h over 48hrs
Dataset 2: Public synthetic data

120 time-series containing five circadian rhythmic patterns
(Michael et al. 2008)
time-series sampled every 4h over 48hrs

Dataset 3: Public microarray data
Arabidopsis circadian expression data (Edwards et al.
2006)
time-series sampled every 4h over 48hrs
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Periodicity Detection with Random Background
Models

A 10 000 stationary periodic
signals and 10 000 white noise
signals

B 10 000 non-stationary periodic
signals and 10 000 white noise
signals

C 10 000 stationary periodic
signals and 10 000 AR(1) signals

D 10 000 non-stationary periodic
signals and 10 000 AR(1) signals

Performance measurement

binary classification: periodic
and non-periodic

ROC curve
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Robustness to Noise and Wavelength

Identifying (A) stationary and (B) non-stationary periodic

signals under decreasing signal-to-noise ratio (SNR)

Distribution of differences between predicted wavelength

and the actual wavelength for each periodic signals

(wavelength ∈ [20h, 28h) with 0.1-h spaced)
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Detection of Non-sinusoidal Periodic Waveforms

Data downloaded from http://haystack.cgrb.oregonstate.edu/

120 time-series
5 circadian rhythmic
patterns, 24 samples
for each
ARSER identified 87%
(104/120) periodic
signals
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Analysis of Arabidopsis Circadian Expression Data

Comparison of three algorithms for identifying Arabidopsis
circadian-regulated genes

Original Report

COSOPT algorithm by setting
pMMC-β < 0.05

3505 genes, 16% of Arabidopsis
whole genome are rhythmically
expressed

ARSER identified

4929 genes rhythmically
expressed (q-value<0.05)

covering 96% of genes identified
by COSOPT
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Newly identified Arabidopsis Rhythmic Transcripts by
ARSER

Principal component analysis of the 1549 newly-found rhythmic

transcripts in Arabidopsis identified by ARSER.

Computational Validation

PCA analysis

first two components
show rhythmic pattern

Biological Validation

find 2 core clock genes
from 27 known
Arabidopsis clock genes.

CRY1 and PRR9
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Summary

ARSER combines the time-domain and frequency-domain
analyses to efficiently identify sinusoidal and non-sinusoidal
periodic patterns in short, noisy and non-stationary time-series.
Tested on well defined simulation data, ARSER is superior to
two former methods, COSOPT and Fisher’s G-test.
Analysis of Arabidopsis microarray data using ARSER led to
identification of a novel set of periodic transcripts

Outlook
ARSER can only used to analyze evenly spaced
time-series. We are developing an algorithm for irregularly
spaced samples
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BioClock: a platform for analyzing circadian
expression data

Website
http://bioinfo.cau.edu.cn/BioClock

Poster
Poster Section E34
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Thank you!

Rendong Yang
Email: cauyrd@gmail.com
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